Abstract-As a core security issue in reliable cloud storage, data integrity has received much attention. Data auditing protocols enable a verifier to efficiently check the integrity of the outsourced data without downloading the data. A key research challenge associated with existing designs of data auditing protocols is the complexity in key management. In this paper, we seek to address the complex key management challenge in cloud data integrity checking by introducing fuzzy identity-based auditing-the first in such an approach, to the best of our knowledge. More specifically, we present the primitive of fuzzy identity-based data auditing, where a user's identity can be viewed as a set of descriptive attributes. We formalize the system model and the security model for this new primitive. We then present a concrete construction of fuzzy identity-based auditing protocol by utilizing biometrics as the fuzzy identity. The new protocol offers the property of error-tolerance, namely, it binds private key to one identity which can be used to verify the correctness of a response generated with another identity, if and only if both identities are sufficiently close. We prove the security of our protocol based on the computational Diffie-Hellman assumption and the discrete logarithm assumption in the selective-ID security model. Finally, we develop a prototype implementation of the protocol which demonstrates the practicality of the proposal.
Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.