We present a structurally dynamic model for nucleotide-and actin-induced closure of the actin-binding cleft of myosin, based on site-directed spin labeling and electron paramagnetic resonance (EPR) in Dictyostelium myosin II. The actin-binding cleft is a solventfilled cavity that extends to the nucleotide-binding pocket and has been predicted to close upon strong actin binding. Single-cysteine labeling sites were engineered to probe mobility and accessibility within the cleft. Addition of ADP and vanadate, which traps the posthydrolysis biochemical state, influenced probe mobility and accessibility slightly, whereas actin binding caused more dramatic changes in accessibility, consistent with cleft closure. We engineered five pairs of cysteine labeling sites to straddle the cleft, each pair having one label on the upper 50-kDa domain and one on the lower 50-kDa domain. Distances between spin-labeled sites were determined from the resulting spin-spin interactions, as measured by continuous wave EPR for distances of 0.7-2 nm or pulsed EPR (double electron-electron resonance) for distances of 1.7-6 nm. Because of the high distance resolution of EPR, at least two distinct structural states of the cleft were resolved. Each of the biochemical states tested (prehydrolysis, posthydrolysis, and rigor), reflects a mixture of these structural states, indicating that the coupling between biochemical and structural states is not rigid. The resulting model is much more dynamic than previously envisioned, with both open and closed conformations of the cleft interconverting, even in the rigor actomyosin complex.double electron-electron resonance Í dipolar interaction Í actomyosin M yosin motors use the energy derived from ATP hydrolysis to generate force for a diverse repertoire of biological tasks (1). Class II myosins produce muscle contraction and are involved in cytokinesis and cell motility. The present study focuses on Dictyostelium discoideum (Dicty) myosin II, which offers optimal facility for expression and purification of mutants, and is functionally similar to muscle myosin II (2, 3).