The precise machineries required for two aspects of eukaryotic DNA replication, Okazaki fragment processing (OFP) and telomere maintenance, are poorly understood. In this work, we present evidence that Saccharomyces cerevisiae Pif1 helicase plays a wider role in DNA replication than previously appreciated and that it likely functions in conjunction with Dna2 helicase/nuclease as a component of the OFP machinery. In addition, we show that Dna2, which is known to associate with telomeres in a cell-cycle-specific manner, may be a new component of the telomere replication apparatus. Specifically, we show that deletion of PIF1 suppresses the lethality of a DNA2-null mutant. The pif1⌬ dna2⌬ strain remains methylmethane sulfonate sensitive and temperature sensitive; however, these phenotypes can be suppressed by further deletion of a subunit of pol ␦, POL32. Deletion of PIF1 also suppresses the cold-sensitive lethality and hydroxyurea sensitivity of the pol32⌬ strain. Dna2 is thought to function by cleaving long flaps that arise during OFP due to excessive strand displacement by pol ␦ and/or by an as yet unidentified helicase. Thus, suppression of dna2⌬ can be rationalized if deletion of POL32 and/or PIF1 results in a reduction in long flaps that require Dna2 for processing. We further show that deletion of DNA2 suppresses the long-telomere phenotype and the high rate of formation of gross chromosomal rearrangements in pif1⌬ mutants, suggesting a role for Dna2 in telomere elongation in the absence of Pif1.Yeast Pif1 is the founding member of the Pif1 subfamily of superfamily 1 DNA helicases (3). While other organisms, such as Caenorhabditis elegans and Homo sapiens, have only one identified Pif1 family member, in yeast, there is a second, closely related, protein, Rrm3p (3). In yeast, neither of these helicases is essential and mutants lacking both are viable and repair proficient. Both yeast proteins have 5Ј-to-3Ј DNA helicase activity (21,30,31). The region of similarity between Pif1 and Rrm3 is limited to the seven helicase motifs, which exhibit 40% identity and 60% similarity (3). This may indicate that the two helicases have structurally similar DNA substrates. Nevertheless, the two helicases differ in their biological functions, and these differences are likely mediated not only by the helicase domain but also by the divergent N termini, which are not required for helicase activity (4). To date, it has been impossible to determine which helicase, Rrm3 or Pif1, is the functional homolog of the single ortholog in other eukaryotes.One difference between Rrm3 and Pif1 is in their function at the rRNA gene. In rrm3 mutants, there is an increase in replisome pausing at the Fob1 protein-bound replication fork barrier (RFB) in the rRNA gene (22). The hypothesis is that Rrm3 is required to remove proteins that block the fork at that point, since Rrm3 is required for promoting fork movement at over 1,400 loci in the yeast genome, in addition to the RFB. In contrast to Rrm3, Pif1 seems to be required for pausing at the rRNA...