We investigated trace-metal (TM)––Zn, Pb and Cd––concentrations and spatial distributions in the uppermost layers of non-forest soils from Tatra National Park (West Carpathians). We aimed to determine the main factors affecting the distribution of TMs, as well as the risk they posed to the environment. TM concentrations were compared to the target and intervention values established by the Dutch Ministry. Principle component analysis was used to identify the potential factors affecting TM accumulation, with two-factor analysis being applied to further examine the importance of any given factor. To examine the regularity of the TM distribution, semivariograms were created. The semivariograms of Cd and Pb were similar, suggesting a moderate spatial dependence for these metal concentrations, while the Zn variogram indicated a lack of spatial continuity for this metal. We established that the Zn, Pb and Cd exceeded target levels and at some sites, Cd exceeded the intervention values, posing a strong ecological risk to the environment. Our study confirmed that the parent rock was the most important factor affecting the TM accumulation. The carbonate-free soils differed from carbonate soils in the second important factor affecting TM accumulation, for carbonate-free soils it was location when for carbonate soils–TM content in the parent material. The Zn, Pb and Cd distribution patterns indicated that Cd, but also to a lesser degree Pb and Zn, accumulation mainly resulted from long-range transport from industrialised areas, while the Zn concentrations were also affected by local sources, such as the historical mining of Zn ore.