“…Intelligent techniques help to resolve the uncertainty of traditional DGA methods due to boundary problems and unresolved codes or multi-fault scenarios (Wani et al, 2021). Researchers have applied many artificial intelligence techniques to DGA fault diagnosis, such as neural networks (Duan and Liu, 2011;Wang et al, 2016;Qi et al, 2019;Yan et al, 2019;Yang et al, 2019Yang et al, , 2020Luo et al, 2020;Velásquez and Lara, 2020;Mi et al, 2021;Taha et al, 2021;Zhou et al, 2021), support vector machine (SVM) (Wang and Zhang, 2017;Fang et al, 2018;Huang et al, 2018;Illias and Liang, 2018;Kari et al, 2018;Kim et al, 2019;Zeng et al, 2019;Zhang et al, 2019;Zhang Y. et al, 2020;Benmahamed et al, 2021), and clustering (Islam et al, 2017;Misbahulmunir et al, 2020). These techniques involve statistical machine learning, deep learning, etc.…”