Background
Electrocardiogram (ECG) signal classification plays a critical role in the automatic diagnosis of heart abnormalities. While most ECG signal patterns cannot be recognized by a human interpreter, they can be detected with precision using artificial intelligence approaches, making the ECG a powerful non-invasive biomarker. However, performing rapid and accurate ECG signal classification is difficult due to the low amplitude, complexity, and non-linearity. The widely-available deep learning (DL) method we propose has presented an opportunity to substantially improve the accuracy of automated ECG classification analysis using rhythm or beat features. Unfortunately, a comprehensive and general evaluation of the specific DL architecture for ECG analysis across a wide variety of rhythm and beat features has not been previously reported. Some previous studies have been concerned with detecting ECG class abnormalities only through rhythm or beat features separately.
Methods
This study proposes a single architecture based on the DL method with one-dimensional convolutional neural network (1D-CNN) architecture, to automatically classify 24 patterns of ECG signals through both rhythm and beat. To validate the proposed model, five databases which consisted of nine-class of ECG-base rhythm and 15-class of ECG-based beat were used in this study. The proposed DL network was applied and studied with varying datasets with different frequency samplings in intra and inter-patient scheme.
Results
Using a 10-fold cross-validation scheme, the performance results had an accuracy of 99.98%, a sensitivity of 99.90%, a specificity of 99.89%, a precision of 99.90%, and an F1-score of 99.99% for ECG rhythm classification. Additionally, for ECG beat classification, the model obtained an accuracy of 99.87%, a sensitivity of 96.97%, a specificity of 99.89%, a precision of 92.23%, and an F1-score of 94.39%. In conclusion, this study provides clinicians with an advanced methodology for detecting and discriminating heart abnormalities between different ECG rhythm and beat assessments by using one outstanding proposed DL architecture.