2018
DOI: 10.1016/j.ultramic.2018.08.024
|View full text |Cite
|
Sign up to set email alerts
|

Accurate determination of low-symmetry Bravais unit cells by EBSD

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(3 citation statements)
references
References 36 publications
0
2
0
1
Order By: Relevance
“…Similar to ab-initio analysis on diffraction patterns developed for convergent beam electron diffraction (CBED) (Ayer, 1989; Page, 1992), phase identification using just EBSD patterns (Michael & Goehner, 1999; Michael & Eades, 2000; Dingley & Wright, 2009; Li et al, 2014; Li & Han, 2015; Han et al, 2018 a ; Kaufmann et al, 2019), chemical-sensitive holography (Lühr et al, 2016), or combinations with EDS data (Small & Michael, 2001; Nowell & Wright, 2004) have also been extensively studied to compete with the more traditional XRD method. Due to the inherent nature of diffuse scattering, the accuracy of any electron diffraction-based method to measure lattice parameters is unlikely to reach that of XRD without a sophisticated band localization algorithm (Ram et al, 2014), although correct classification of the Bravais lattice with a reasonably accurate lattice parameter is already possible (Michael & Goehner, 1999, 2000; Han et al, 2018 a , 2018 b ). In order to determine the symmetry elements from EBSPs (e.g., rotation axes, diads, triads, etc.…”
Section: Resultsmentioning
confidence: 99%
“…Similar to ab-initio analysis on diffraction patterns developed for convergent beam electron diffraction (CBED) (Ayer, 1989; Page, 1992), phase identification using just EBSD patterns (Michael & Goehner, 1999; Michael & Eades, 2000; Dingley & Wright, 2009; Li et al, 2014; Li & Han, 2015; Han et al, 2018 a ; Kaufmann et al, 2019), chemical-sensitive holography (Lühr et al, 2016), or combinations with EDS data (Small & Michael, 2001; Nowell & Wright, 2004) have also been extensively studied to compete with the more traditional XRD method. Due to the inherent nature of diffuse scattering, the accuracy of any electron diffraction-based method to measure lattice parameters is unlikely to reach that of XRD without a sophisticated band localization algorithm (Ram et al, 2014), although correct classification of the Bravais lattice with a reasonably accurate lattice parameter is already possible (Michael & Goehner, 1999, 2000; Han et al, 2018 a , 2018 b ). In order to determine the symmetry elements from EBSPs (e.g., rotation axes, diads, triads, etc.…”
Section: Resultsmentioning
confidence: 99%
“…But when the calculation error of the interplanar spacing is large, although this approach (the reciprocal vector length is proportional to the bandwidth) will introduce additional errors, it seems that there is no better way. Most previous methods used the naked eye to determine the position and width of Kikuchi bands 16–18 . Relying on visual recognition is not only time consuming due to the generally manual definition of band positions and widths, but also has low accuracy.…”
Section: Introductionmentioning
confidence: 99%
“…电子背散射衍射(EBSD)作为一种相对较新的 显微结构分析手段,可以在较大范围内提供材料的 取向、织构、相鉴定及含量分布等晶体学统计性信 息 [1][2][3][4] ,为无机材料制备工艺的改善、微结构调控及 性能优化提供了可靠的科学依据。Fang 等 [5] 通过 EBSD 技术对梯度纳米(GNG)金属铜进行表征, 为解释其拉伸变形的机理提供了重要显微结构证据。 EBSD 还是研究涂层内部残余应力分布的最佳显微 结构分析手段,为研究热障涂层的服役失效行为提 供了重要支撑。EBSD 提供的所有晶体学信息都依 赖对菊池衍射花样的分析 [6] ,菊池花样直观反映材 料内部微观结构,其中,菊池带对应不同指数的晶 面,菊池带的交点即菊池极代表晶带轴 [4] [7] 尝试利用对称性进行相鉴定,但 因为晶面间距计算误差较大,只能依靠肉眼在菊池 花样中识别对称轴,容易误判。通过菊池带宽度计 算晶面间距的误差通常较大(5%~20%) [7][8] ,这是 用菊池花样进行对称性分析的最大难点。我们前期 工作对晶面间距进行了准确测量,平均相对误差为 2.6% [9] ,为准确识别对称轴奠定了基础,还可区分 非对称轴。对 Si 单晶菊池花样的分析发现了类似三 次轴的非对称轴,计算晶面间距发现,菊池带并不 属于同一晶面族,不满足三次轴的条件,这是肉眼 识别很容易误判的。晶面夹角可通过三维空间矢量 计算获得 [10]…”
unclassified