In order to transmit biochemical signals, biological regulatory systems dissipate energy with concomitant entropy production. Additionally, signaling often takes place in challenging environmental conditions. In a simple model regulatory circuit given by an input and a delayed output, we explore the trade-offs between information transmission and the system's energetic efficiency. We determine the maximally informative network, given a fixed amount of entropy production and delayed response, exploring both the case with and without feedback. We find that feedback allows the circuit to overcome energy constraints and transmit close to the maximum available information even in the dissipationless limit. Negative feedback loops, characteristic of shock responses, are optimal at high dissipation. Close to equilibrium positive feedback loops, known for their stability, become more informative. Asking how the signaling network should be constructed to best function in the worst possible environment, rather than an optimally tuned one or in steady state, we discover that at large dissipation the same universal motif is optimal in all of these conditions.