Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular states (extrinsic noise) degrade information transmitted through signaling networks. We analyze the ability of temporal signal modulation, that is dynamics, to reduce noise-induced information loss. In the extracellular signal-regulated kinase (ERK), calcium (Ca2+), and nuclear factor kappa-B (NFκB) pathways, response dynamics resulted in significantly greater information transmission capacities compared to non-dynamic responses. Theoretical analysis demonstrated that signaling dynamics has a key role in overcoming extrinsic noise. Experimental measurements of information transmission in the ERK network under varying signal-to-noise confirmed our predictions and showed that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise induced information loss. By curbing the information-degrading effects of cell-to-cell variability, dynamic responses substantially increase the accuracy of biochemical signaling networks.
Toll-like receptors (TLRs) recognize specific pathogen-associated molecular patterns and initiate innate immune responses through signaling pathways that depend on the adaptor proteins MyD88 (myeloid differentiation marker 88) or TRIF (TIR domain-containing adaptor protein-inducing interferon-β). TLR4, in particular, uses both adaptor proteins to activate the transcription factor nuclear factor κB (NF-κB); however, the specificity and redundancy of these two pathways remain to be elucidated. We developed a mathematical model to show how each pathway encodes distinct dynamical features of NF-κB activity and makes distinct contributions to the high variability observed in single-cell measurements. The assembly of a macromolecular signaling platform around MyD88 associated with receptors at the cell surface determined the timing of initial responses to generate a reliable, digital NF-κB signal. In contrast, ligand-induced receptor internalization into endosomes produced noisy, delayed, yet sustained NF-κB signals through TRIF. With iterative mathematical model development, we predicted the molecular mechanisms by which the MyD88- and TRIF-mediated pathways provide ligand concentration-dependent signaling dynamics that transmit information about the pathogen threat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.