Forward and reverse modeling of RF circuit blocks are useful approaches in design space exploration. The underlying idea of forward modeling is the creation of accurate surrogate models, which can be used to predict the circuit performances replacing (expensive) circuit simulations. On the other hand, reverse modeling concerns multiobjective optimization to explore relevant trade-offs between performances. This paper provides a discussion of application of surrogate models and multiobjective optimization to narrow-band low noise amplifier design. We discuss numerical difficulties encountered when the forward model is derived by using surrogate models of low noise amplifier admittances to compute performance figures via analytical equations. Afterward, we provide an example where direct performace modeling leads to a more accurate result even when the simplest surrogate model type (a lookup table) is used. Finally, a detailed tutorial of the normal boundary intersection optimization method is provided.