An inductorless low-noise amplifier (LNA) with active balun is proposed for multi-standard radio applications between 100 MHz and 6 GHz. It exploits a combination of a common-gate (CG) stage and an admittance-scaled common-source (CS) stage with replica biasing to maximize balanced operation, while simultaneously canceling the noise and distortion of the CG-stage. In this way, a noise figure (NF) close to or below 3 dB can be achieved, while good linearity is possible when the CS-stage is carefully optimized. We show that a CS-stage with deep submicron transistors can have high IIP2, because the cross-term in a two-dimensional Taylor approximation of the () characteristic can cancel the traditionally dominant square-law term in the () relation at practical gain values. Using standard 65 nm transistors at 1.2 V supply voltage, we realize a balun-LNA with 15 dB gain, NF 3.5 dB and IIP2 +20 dBm, while simultaneously achieving an IIP3 0 dBm. The best performance of the balun is achieved between 300 MHz to 3.5 GHz with gain and phase errors below 0.3 dB and 2 degrees. The total power consumption is 21 mW, while the active area is only 0.01 mm 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.