Localization has become an important aspect in a wide range of mobile services with the integration of the Internet of things and service on demand. Numerous mechanisms have been proposed for localization, most of which are based on the estimation of distances. Depending on the channel modeling, each mechanism has its advantages and limitations on deployment, exhibiting different performances in terms of error rates and implementation. With the development of technology, these limitations are rapidly overcome with hybrid systems and enhancement schemes. The successful approach depends on the achievement of a low error rate and its controllability by the integration of deployed products. In this study, we propose and analyze a new distance estimation technique employing photography and image sensor communications, also named optical camera communications (OCC). It represents one of the most important steps in the implemented trilateration localization scheme with real architectures and conditions of deployment which is the second our contribution for this article. With the advantages of the image sensor hardware integration in smart mobile devices, this technology has great potential in localization-based optical wireless communication