2017
DOI: 10.1016/j.commatsci.2017.07.010
|View full text |Cite
|
Sign up to set email alerts
|

Accurate representation of formation energies of crystalline alloys with many components

Abstract: In this paper I propose a new model for representing the formation energies of multicomponent crystalline alloys as a function of atom types. In the cases when displacements of atoms from their equilibrium positions are not large, the proposed method has a similar accuracy as the state-of-the-art cluster expansion method, and a better accuracy when the fitting dataset size is small. The proposed model has only two tunable parameters-one for the interaction range and one for the interaction complexity.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
33
0
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 55 publications
(36 citation statements)
references
References 25 publications
1
33
0
2
Order By: Relevance
“…This is just one of a class of recently popularized machine learning methods for creating nonparametric interatomic potentials, which has been shown to be very successful in tackling difficult materials modelling problems, ranging from investigating the structure of amorphous materials (carbon (Deringer et al, 2017(Deringer et al, , 2019, silicon (Bartók et al, 2018)), the mechanics of metals (tungsten (Szlachta et al, 2014), iron (Dragoni et al, 2018)) to molecular liquids such (water (Bartók et al, 2013a), methane (Veit et al, 2019). There are many alternatives, using other regression frameworks, such as artificial neural networks (Behler and Parrinello, 2007) and even linear regression (Shapeev, 2017;Drautz, 2019). All these methods are improvable, since using more input data typically leads to more accurate potentials, due to the nonparametric nature of the functional forms.…”
Section: Machine Learning Potentialsmentioning
confidence: 99%
“…This is just one of a class of recently popularized machine learning methods for creating nonparametric interatomic potentials, which has been shown to be very successful in tackling difficult materials modelling problems, ranging from investigating the structure of amorphous materials (carbon (Deringer et al, 2017(Deringer et al, , 2019, silicon (Bartók et al, 2018)), the mechanics of metals (tungsten (Szlachta et al, 2014), iron (Dragoni et al, 2018)) to molecular liquids such (water (Bartók et al, 2013a), methane (Veit et al, 2019). There are many alternatives, using other regression frameworks, such as artificial neural networks (Behler and Parrinello, 2007) and even linear regression (Shapeev, 2017;Drautz, 2019). All these methods are improvable, since using more input data typically leads to more accurate potentials, due to the nonparametric nature of the functional forms.…”
Section: Machine Learning Potentialsmentioning
confidence: 99%
“…In the on-lattice model, LRP, 18 the energy of each configuration is partitioned into contributions of the separate atomic environments of each atom as…”
Section: Interatomic Potentialmentioning
confidence: 99%
“…Для моделирования эволюции атомной структуры необходимо описывать зависимость энергии системы от конфигурации атомных окружений. В данной работе для этой цели использовался малоранговый потенциал межатомного взаимодействия на решетке (выше был обозначен LRP) [48]. LRP относится к классу машиннообучаемых потенциалов, его основной задачей является интерполяция результатов квантово-механических расчетов.…”
Section: малоранговый потенциал взаимодействияunclassified
“…Использование облучения для ускорения диффузионных процессов позволяет детектировать структурные изменения при более низкихтемпературах [46,47]. Теоретическая часть исследования проводится с помощью атомистического Монте-Карло с использованием потенциала [48].…”
Section: Introductionunclassified