Markov chain Monte Carlo (MCMC) sampling of posterior distributions arising in Bayesian inverse problems is challenging when evaluations of the forward model are computationally expensive. Replacing the forward model with a low-cost, low-fidelity model often significantly reduces computational cost; however, employing a low-fidelity model alone means that the stationary distribution of the MCMC chain is the posterior distribution corresponding to the low-fidelity model, rather than the original posterior distribution corresponding to the high-fidelity model. We propose a multifidelity approach that combines, rather than replaces, the high-fidelity model with a low-fidelity model. First, the low-fidelity model is used to construct a transport map that deterministically couples a reference Gaussian distribution with an approximation of the low-fidelity posterior. Then, the high-fidelity posterior distribution is explored using a non-Gaussian proposal distribution derived from the transport map. This multifidelity "preconditioned" MCMC approach seeks efficient sampling via a proposal that is explicitly tailored to the posterior at hand and that is constructed efficiently with the low-fidelity model. By relying on the low-fidelity model only to construct the proposal distribution, our approach guarantees that the stationary distribution of the MCMC chain is the high-fidelity posterior. In our numerical examples, our multifidelity approach achieves significant speedups compared to single-fidelity MCMC sampling methods.Keywords: Bayesian inverse problems; transport maps; multifidelity; model reduction; Markov chain Monte Carlo * The second author acknowledges support of the AFOSR MURI on multi-information sources of multi-physics systems under Award Number FA9550-15-1-0038.