The analytical potential of furan as a chemical ionization (CI) reagent was evaluated for selectivity with nine monosubstituted naphthalene compounds. The ion-molecule reactions of furan and tetrahydrofuran (THF) were compared with those of methane, methanol and acetonitrile (prominently producing [M + H](+) ion base peaks) with naphthalene compounds in chemical ionization mass spectrometry (CI-MS). Reactions with furan predominantly show M(+) and [M + 39](+) ions. Based on this phenomenon, investigations were carried out for some of the molecular factors such as proton affinity, substituent effects and the preferred site of [C(3)H(3)](+) ion attachment that influence reactivity in furan CI. High selectivity with different substituents is observed in the formation of [M + 39](+) adduct ion, suggesting its usefulness as selective ionization reagent liquid. The selectivity and sensitivity are illustrated in the analysis of mixture of amino acids. Furthermore, the structure determination and reaction mechanism study is characterized by collision-activated dissociation experiments in CI-MS/MS and CI-MS/MS/MS.