The venom of the snake Bungarus fasciatus contains a hydrophilic, monomeric species of acetylcholinesterase (AChE), characterized by a C-terminal region that does not resemble the alternative T-or H-peptides. Here, we show that the snake contains a single gene for AChE, possessing a novel alternative exon (S) that encodes the C-terminal region of the venom enzyme, located downstream of the T exon. Alternative splicing generates S mRNA in the venom gland and S and T mRNAs in muscle and liver. We found no evidence for the presence of an H exon between the last common "catalytic" exon and the T exon, where H exons are located in Torpedo and in mammals. Moreover, COS cells that were transfected with AChE expression vectors containing the T exon with or without the preceding genomic region produced exclusively AChE T subunits. In the snake tissues, we could not detect any glycophosphatidylinositol-anchored AChE form that would have derived from H subunits. In the liver, the cholinesterase activity comprises both AChE and butyrylcholinesterase components; butyrylcholinesterase corresponds essentially to nonamphiphilic tetramers and AChE to nonamphiphilic monomers (G 1 na ). In muscle, AChE is largely predominant: it consists of globular forms (G 1 a and G 4 a ) and trace amounts of asymmetric forms (A 8 and A 12 ), which derive from AChE T subunits. Thus, the Bungarus AChE gene possesses alternatively spliced T and S exons but no H exon; the absence of an H exon may be a common feature of AChE genes in reptiles and birds.