The dissociation dynamics of allene, propyne, and propyne-d 3 at 193 nm were investigated with photofragment translational spectroscopy. Products were either photoionized using tunable VUV synchrotron radiation or ionized with electron impact. Product time-of-flight data were obtained to determine centre-of-mass translational energy (P(E T )) distributions, and photoionization efficiency (PIE) curves were measured for the hydrocarbon products. The two major product channels evident from this study are atomic and molecular hydrogen loss, with a H:H 2 branching ratio of 90:10, regardless of precursor. The P(E T ) distribution for each channel is also largely independent of precursor. Both channels appear to occur following internal conversion to the ground electronic state. The propyne-d 3 results show that there is extensive isotopic scrambling prior to H(D) atom loss, and that the H:D product ratio is approximately unity. The PIE curves for H(D) atom loss from allene, propyne, and propyne-d 3 indicate that the dominant corresponding C 3 H 3 product is the propargyl radical in all cases. There is some evidence from the PIE curves that the dominant C 3 H 2 products from allene and propyne are propadienylidene (H 2 CCC:) and propargylene (HCCCH), respectively.