We report the fabrication of bottom gate a-IGZO TFTs based on HfO2 stacked dielectrics with decent electrical characteristics and bias stability. The microscopic, electrical, and optical properties of room temperature deposited a-IGZO film with varied oxygen content were explored. In order to suppress the bulk defects in the HfO2 thin film and hence maximize the quality, surface modification of the SiNx film was investigated so as to achieve a more uniform layer. The root mean square (RMS) roughness of SiNx/HfO2/SiNx (SHS) stacked dielectrics was only 0.66 nm, which was reduced by 35% compared with HfO2 single film (1.04 nm). The basic electrical characteristics of SHS-based a-IGZO TFT were as follows: Vth is 2.4 V, μsat is 21.1 cm2 V−1 s−1, Ion/Ioff of 3.3 × 107, Ioff is 10−11 A, and SS is 0.22 V/dec. Zr-doped HfO2 could form a more stable surface, which will decrease the bulk defect states so that the stability of device can be improved. It was found that the electrical characteristics were improved after Zr doping, with a Vth of 1.4 V, Ion/Ioff of 108, μsat of 19.5 cm2 V−1 s−1, Ioff of 10−12 A, SS of 0.18 V/dec. After positive gate bias stress of 104 s, the ΔVth was decreased from 0.43 V (without Zr doping) to 0.09 V (with Zr doping), the ΔSS was decreased from 0.19 V/dec to 0.057 V/dec, respectively, which shows a meaningful impact to realize the long-term working stability of TFT devices.