Metal corrosion is becoming increasingly serious in oil and gas production, and one way to solve this problem is to modify the metal surface. Thus, a corrosion inhibition coating on the N80 steel was constructed via the self-polymerization and assembling of the dopamine. The optimum reaction condition of polydopamine films was determined by the corrosion rate assessment of the films coated N80 steel, which was the reaction at 60 °C and 5 g/L dopamine in the Tris-HCl buffer solution (pH = 8.5) for 1 h. The spectral results confirmed the existence of the polydopamine coating on the surface of N80 steel, and high stability of the coating in the oil well produced water was observed. The anti-corrosion performance of the polydopamine-coated N80 steel confirmed that high temperature accelerated the anti-corrosion effect of the coating, and the corrosion rate of N80 plate in 90 °C oil well produced water was 0.0591 mm·a−1, lower than the standard value. The corrosion rates of the polydopamine coated N80, A3 and J55 plates at 90 °C were 0.0541 mm·a−1, 0.0498 mm·a−1 and 0.0455 mm·a−1, respectively. No significant effects of the categories of corrosive medium and steel plate on the performance of the coating were observed.