Recent dysarthric speech recognition studies using mixed data from a collection of neurological diseases suggested articulatory data can help to improve the speech recognition performance. This project was specifically designed for the speakerindependent recognition of dysarthric speech due to amyotrophic lateral sclerosis (ALS) using articulatory data. In this paper, we investigated three across-speaker normalization approaches in acoustic, articulatory, and both spaces: Procrustes matching (a physiological approach in articulatory space), vocal tract length normalization (a data-driven approach in acoustic space), and feature space maximum likelihood linear regression (a model-based approach for both spaces), to address the issue of high degree of variation of articulation across different speakers. A preliminary ALS data set was collected and used to evaluate the approaches. Two recognizers, Gaussian mixture model (GMM) -hidden Markov model (HMM) and deep neural network (DNN) -HMM, were used. Experimental results showed adding articulatory data significantly reduced the phoneme error rates (PERs) using any or combined normalization approaches. DNN-HMM outperformed GMM-HMM in all configurations. The best performance (30.7% PER) was obtained by triphone DNN-HMM + acoustic and articulatory data + all three normalization approaches, a 15.3% absolute PER reduction from the baseline using triphone GMM-HMM + acoustic data.