Academics and the health community are paying much attention to developing smart remote patient monitoring, sensors, and healthcare technology. For the analysis of medical scans, various studies integrate sophisticated deep learning strategies. A smart monitoring system is needed as a proactive diagnostic solution that may be employed in an epidemiological scenario such as COVID-19. Consequently, this work offers an intelligent medicare system that is an IoT-empowered, deep learning-based decision support system (DSS) for the automated detection and categorization of infectious diseases (COVID-19 and pneumothorax). The proposed DSS system was evaluated using three independent standard-based chest X-ray scans. The suggested DSS predictor has been used to identify and classify areas on whole X-ray scans with abnormalities thought to be attributable to COVID-19, reaching an identification and classification accuracy rate of 89.58% for normal images and 89.13% for COVID-19 and pneumothorax. With the suggested DSS system, a judgment depending on individual chest X-ray scans may be made in approximately 0.01 s. As a result, the DSS system described in this study can forecast at a pace of 95 frames per second (FPS) for both models, which is near to real-time.
The task of recognising an object and estimating its 6d pose in a scene has received considerable attention in recent years. The accessibility and low-cost of consumer RGB-D cameras, make object recognition and pose estimation feasible even for small industrial businesses. An example is the industrial assembly line, where a robotic arm should pick a small, textureless and mostly homogeneous object and place it in a designated location. Despite all the recent advancements of object recognition and pose estimation techniques in natural scenes, the problem remains challenging for industrial parts. In this paper, we present a framework to simultaneously recognise the object’s class and estimate its 6d pose from RGB-D data. The proposed model adapts a global approach, where an object and the Region of Interest (ROI) are first recognised from RGB images. The object’s pose is then estimated from the corresponding depth information. We train various classifiers based on extracted Histogram of Oriented Gradient (HOG) features to detect and recognize the objects. We then perform template matching on the point cloud based on surface normal and Fast Point Feature Histograms (FPFH) to estimate the pose of the object. Experimental results show that our system is quite efficient, accurate and robust to illumination and background changes, even for the challenging objects of Tless dataset. 6d pose estimation; 3d object recognition; textureless objects; homogeneous objects
Rapid advancements have been made in the field of artificial intelligence in recent years. This has resulted in its adoption in various technologies from medicine to search engines. Existing media management systems have however not yet fully leveraged the power of artificial intelligence (AI) to give users enhanced information apart from basic media metadata. This chapter proposes a smart movie management system which works majorly offline and uses AI to deliver optimum information to the users on four vital tasks. These tasks are multilevel phrase level review polarity, plot and review keywords, a content-based recommendation system, and an emotion recognition system. The complete system works in near-real time with a user-friendly presentation to maximize a user's information gain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.