We study the acoustomagnetoelectric (AME) effect in two-dimensional graphene with an energy bandgap using the semiclassical Boltzmann transport equation within the hypersound regime, 1 q k l (where q k represents the acoustic wavenumber and l is the mean free path of the electron). The Boltzmann transport equation and other relevant equations were solved analytically to obtain an expression for the AME current density, consisting of longitudinal and Hall components. Our numerical results indicate that both components of the AME current densities display oscillatory behaviour. Furthermore, geometric resonances and Weiss oscillations were each defined using the relationship between the current density and Surface Acoustic Wave (SAW) frequency and the inverse of the applied magnetic field, respectively. Our results show that the AME current density of bandgap graphene, which can be controlled to suit a particular electronic device application, is smaller than that of (gapless) graphene and is therefore, more suited for nanophotonic device applications.