No abstract
Two different Mott insulator wires, vanadium dioxide and vanadium sesquioxide, were prepared on the piezoelectric LiNbO3 substrates. Coupling of acoustic waves propagating in LiNbO3 with free carriers in vanadium oxide gives rise to the acoustoelectric effect that manifests itself as the generation of direct electric current by the acoustic wave. According to a phenomenological model, the value of the effect strongly depends on the wires conductivity, which, for the vanadium-oxide films, changes by a few orders of magnitude. We demonstrated that this yields a significant enhancement of the direct current (DC) current generated in the wires at the metal–insulator transition temperatures. The sign of the generated DC voltage is different for excitations by surface and bulk acoustic wave modes, which may happen due to reverse wave propagation at the substrate surface. For each resonance mode, polarities of the generated DC signal are the same in both wires, despite the signs of charge carriers being different for these materials. It was shown that two complementary techniques (acoustoelectric and Hall effect measurements) yield opposite signs of charge carriers in VO2.
Fast and sensitive phase transition detection is one of the most important requirements for new material synthesis and characterization. For solid-state samples, microwave absorption techniques can be employed for detecting phase transitions because it simultaneously monitors changes in electronic and magnetic properties. However, microwave absorption techniques require expensive high-frequency microwave equipment and bulky hollow cavities. Due to size limitations in conventional instruments, it is challenging to implement these cavities inside a laboratory cryostat. In this work, we designed and built a susceptometer that consists of a small helical cavity embedded into a custom insert of a commercial cryostat. This cavity resonator operated at sub-GHz frequencies is extremely sensitive to changes in material parameters, such as electrical conductivity, magnetization, and electric and magnetic susceptibilities. To demonstrate its operation, we detected superconducting phase transition in Nb and YBa2Cu3O7−δ, metal–insulator transitions in V2O3, ferromagnetic transition in Gd, and magnetic field induced transformation in meta magnetic NiCoMnIn single crystals. This high sensitivity apparatus allows the detection of trace amounts of materials (10−9-cc) undergoing an electromagnetic transition in a very broad temperature (2–400 K) and magnetic field (up to 90 kOe) ranges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.