Epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) and resistance to lung cancer therapy Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death worldwide. The 5-year survival remains at 10-15% despite advances in treatment options.Erlotinib, a TKI targeting EGFR, was initially explored as a second-line treatment in NSCLC patients progressing on standard chemotherapy. Survival was prolonged compared to placebo (1). However, erlotinib was soon discovered to be especially efficient in patients with a mutation in the tyrosine kinase domain of EGFR. These patients are nowThe role of epithelial to mesenchymal transition in resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer Correspondence to: Anders Lade Nielsen. Department of Biomedicine, Bartholin Building, Aarhus University, DK-8000, Aarhus C, Denmark.Email: aln@biomed.au.dk.Abstract: Inhibition of the epidermal growth factor receptor (EGFR) is an important strategy when treating non-small cell lung cancer (NSCLC) patients. However, intrinsic resistance or development of resistance during the course of treatment constitutes a major challenge. The knowledge on EGFRdirected tyrosine kinase inhibitors (TKIs) and their biological effect keeps increasing. Within the group of patients with EGFR mutations some benefit to a much higher degree than others, and for patients lacking EGFR mutations a subset experience an effect. Up to 70% of patients with EGFR mutations and 10-20% of patients without EGFR mutations initially respond to the EGFR-TKI erlotinib, but there is a severe absence of good prognostic markers. Despite initial effect, all patients acquire resistance to EGFR-TKIs.Multiple mechanisms have implications in resistance development, but much is still to be explored. Epithelial to mesenchymal transition (EMT) is a transcriptionally regulated phenotypic shift rendering cells more invasive and migratory. Within the EMT process lays a need for external or internal stimuli to give rise to changes in central signaling pathways. Expression of mesenchymal markers correlates to a bad prognosis and an inferior response to EGFR-TKIs in NSCLC due to the contribution to a resistant phenotype. A deeper understanding of the role of EMT in NSCLC and especially in EGFR-TKI resistance-development constitute one opportunity to improve the benefit of TKI treatment for the individual patient. Many scientific studies have linked the EMT process to EGFR-TKI resistance in NSCLC and our aim is to review the role of EMT in both intrinsic and acquired resistance to EGFR-TKIs.Keywords: Epidermal growth factor receptor (EGFR); epithelial to mesenchymal transition (EMT); non-small cell lung cancer (NSCLC); tyrosine kinase inhibitor (TKI)