Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) is inevitable in metastatic EGFR-mutant lung cancers. Here, we modeled disease progression using EGFR-mutant human tumor cell lines. Although five of six models displayed alterations already found in humans, one harbored an unexpected secondary NRAS Q61K mutation; resistant cells were sensitive to concurrent EGFR and MEK inhibition but to neither alone. Prompted by this finding and because RAS/RAF/MEK mutations are known mediators of acquired resistance in other solid tumors (colon cancers, gastrointestinal stromal tumors, and melanomas) responsive to targeted therapies, we analyzed the frequency of secondary KRAS/NRAS/ BRAF/MEK1 gene mutations in the largest collection to date of lung cancers with acquired resistance to EGFR TKIs. No recurrent NRAS, KRAS, or MEK1 mutations were found in 212, 195, or 146 patient samples, respectively, but 2 of 195 (1%) were found to have mutations in BRAF (G469A and V600E). Ectopic expression of mutant NRAS or BRAF in drug-sensitive EGFR-mutant cells conferred resistance to EGFR TKIs that was overcome by addition of a MEK inhibitor. Collectively, these positive and negative results provide deeper insight into mechanisms of acquired resistance to EGFR TKIs in lung cancer and inform ongoing clinical trials designed to overcome resistance. In the context of emerging knowledge about mechanisms of acquired resistance to targeted therapies in various cancers, our data highlight the notion that, even though solid tumors share common signaling cascades, mediators of acquired resistance must be elucidated for each disease separately in the context of treatment.
Acquired resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI) is a critical problem in the treatment of lung cancer. Although several mechanisms have been shown to be responsible for acquired resistance, all mechanisms have not been uncovered. In this study, we investigated the molecular and cellular profiles of the acquired resistant cells to EGFR-TKI in EGFR-mutant lung cancers. Four EGFR-mutant cell lines were exposed to gefitinib by stepwise escalation and high-concentration exposure methods, and resistant sublines to gefitinib were established. The molecular profiles and cellular phenotypes of these resistant sublines were characterized. Although previously reported, alterations including secondary EGFR T790M mutation, MET amplification, and appearance of epithelial-to-mesenchymal transition (EMT) features were observed, these 2 drug-exposure methods revealed different resistance mechanisms. The resistant cells with EMT features exhibited downregulation of miRNA-200c by DNA methylation. Furthermore, the HCC827-derived subline characterized by the high-concentration exposure method exhibited not only EMT features but also stem cell–like properties, including aldehyde dehydrogenase isoform 1 (ALDH1A1) overexpression, increase of side-population, and self-renewal capability. Resistant sublines with stem cell–like properties were resistant to conventional chemotherapeutic agents but equally sensitive to histone deacetylase and proteasome inhibitors, compared with their parental cells. ALDH1A1 was upregulated in clinical samples with acquired resistance to gefitinib. In conclusion, our study indicates that the manner of EGFR-TKI exposure influences the mechanism of acquired resistance and the appearance of stem cell–like property with EGFR-TKI treatment.
We encountered a family of Japanese descent in which multiple members developed lung cancer. Using whole-exome sequencing, we identified a novel germline mutation in the transmembrane domain of the human epidermal growth factor receptor 2 (HER2) gene (G660D). A novel somatic mutation (V659E) was also detected in the transmembrane domain of HER2 in one of 253 sporadic lung adenocarcinomas. Because the transmembrane domain of HER2 is considered to be responsible for the dimerization and subsequent activation of the HER family and downstream signaling pathways, we performed functional analyses of these HER2 mutants. Mutant HER2 G660D and V659E proteins were more stable than wild-type protein. Both the G660D and V659E mutants activated Akt. In addition, they activated p38, which is thought to promote cell proliferation in lung adenocarcinoma. Our findings strongly suggest that mutations in the transmembrane domain of HER2 may be oncogenic, causing hereditary and sporadic lung adenocarcinomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.