Predicting outcomes in soccer is crucial for various stakeholders, including teams, leagues, bettors, the betting industry, media, and fans. With advancements in computer vision, player tracking data has become abundant, leading to the development of sophisticated soccer analytics models. However, existing models often rely solely on spatiotemporal features derived from player tracking data, which may not fully capture the complexities of in-game dynamics. In this paper, we present an end-to-end system that leverages raw event and tracking data to predict both offensive and defensive actions, along with the optimal decision for each game scenario, based solely on historical game data. Our model incorporates the effectiveness of these actions to accurately predict win probabilities at every minute of the game. Experimental results demonstrate the effectiveness of our approach, achieving an accuracy of 87% in predicting offensive and defensive actions. Furthermore, our in-game outcome prediction model exhibits an error rate of 0.1, outperforming counterpart models and bookmakers’ odds.