The Drosophila segmentation gene fushi tarazu (ftz) is expressed at the cellular blastoderm stage in a pattern of seven transverse stripes; the stripes lie out of register with the segmental primordia, spanning alternate segmental boundaries. The zebra element, a 740-bp DNA sequence upstream of the ftz translational start, directs striped expression of lacZ when introduced into the fly genome. We have purified to homogeneity a sequence-specific DNA-binding factor, FTZ-F1, that binds to two sites located within the zebra element and to two sites within the ftz protein-coding sequence. FTZ-F1 DNA-binding activity is first detected in extracts of 1.5-to 4-hr embryos, coincident with the time of ftz expression in stripes; the activity then diminishes before reappearing during late embryo, larval, and adult stages. When one of the FTZ-Fl-binding sequences in the zebra element is mutated by 2-or 4-base substitutions, the binding to FTZ-F1 is disrupted in vitro, and the intensity of lacZ expression is reduced in transformed embryos, especially in stripes 1, 2, 3, and 6. The results suggest that FTZ-F1 is a transcriptional activator necessary for the proper expression of the ftz gene.