The incidence of autism spectrum disorder (ASD) is increasing year by year in children. The aim of the study was to find possible biomarkers for ASD diagnosis as well as examine MicroRNA (miRNA) signatures and crucial pathways. We conducted a two-stage study to explore potential target genes and functional miRNAs. Peripheral blood samples of children with ASD were enrolled and performed RNA sequencing analysis. The overlapped candidate genes were further screened in combination with differentially expressed genes (DEGs) of GSE77103 datasets. STRING established a protein–protein interaction network comprising DEGs. The hub genes were filtered out using the CytoHubba. Then, we set up a miRNA-mRNA regulatory network. Correlational analyses between hub genes and immune cells associated with ASD were carried out using the CIBERSORT software to assess the diversity of immune cell types in ASD. RNA-sequencing analysis was used to confirm the differential expression of 3 hub genes. Briefly, after blood samples were sequenced interrogating 867 differential genes in our internal screening dataset. After screening GEO databases, 551 DEGs obtained from GSE77103. Fourteen common genes were overlapped through DEGs of GEO datasets and internal screening dataset. Among protein–protein interaction network, 10 hub genes with high degree algorithm were screened out and 3 hub genes of them – ADIPOR1, LGALS3, and GZMB – that were thought to be most associated with the emergence of ASD. Then, we developed a network of miRNA-mRNA regulatory interactions by screening miRNAs (such as hsa-miR-20b-5p, hsa-miR-17-5p, and hsa-miR-216b-5p) that were closely associated to 3 hub genes. Additionally, we discovered 18 different immune cell types associated with ASD using the CIBERSORT algorithm, and we discovered that mononuclear macrophages differed considerably between the 2 groups. Overall, 3 hub genes (ADIPOR1, LGALS3, and GZMB) and 15 candidates miRNAs-target 3 genes regulatory pathways representing potentially novel biomarkers of ASD diseases were revealed. These findings could enhance our knowledge of ASD and offer possible therapeutic targets of ASD patients in the future.