Abstract. Genipin, an active constituent of Gardenia fruit, has been reported to show an antitumor effect in several cancer cell systems. Here, we demonstrate how genipin exhibits a strong apoptotic cell death effect in human non-small-cell lung cancer H1299 cells. Genipin-mediated decrease in cell viability was observed through apoptosis as demonstrated by induction of a sub-G 1 peak through flow cytometry, DNA fragmentation measured by TUNEL assay, and cleavage of poly ADP-ribose-polymerase. During genipin-induced apoptosis, the mitochondrial execution pathway was activated by caspase-9 and -3 activation as examined by a kinetic study, cytochrome c release, and a dose-dependent increase in Bax/Bcl-2 ratio. A search for the downstream pathway reveals that genipin-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2. SB203580, a p38MAPK inhibitor, markedly blocked the formation of TUNEL-positive apoptotic cells in genipin-treated cells. Besides, the interference of p38MAPK inhibited Bax expression and cytochrome c release. Altogether, our observations imply that genipin causes increased levels of Bax in response to p38MAPK signaling, which results in the initiation of mitochondrial death cascade, and therefore it holds promise as a potential chemotherapeutic agent for the treatment of H1299 cells.