Low oxygen and nutrient depletion play critical roles in tumorigenesis, but little is known about how they interact to produce tumor survival and tumor malignancy. In the present study, we investigated the mechanism underlying hypoxia-modulated apoptosis of serum-deprived HepG2 cells. Our results showed that hypoxia blocked the apoptosis, which was accompanied with decreased Bax/ Bcl-2 ratio, inhibited cytochrome c release, and reduced caspase-3 activity. More importantly, increased expressions of VEGF and its receptor-2 (KDR) under hypoxic/ serum-deprived condition suggest that VEGF may act as a survival factor in a self-promoting manner. Data were further supported by results that recombinant human VEGF (rhVEGF) suppressed the serum deprivationinduced apoptosis, and anti-VEGF neutralizing antibody block anti-apoptotic activity of hypoxia. In addition, inhibitors of receptor tyrosine kinase blocked antiapoptosis of hypoxia. Our study further showed that rhVEGF or hypoxia induced ERK phosphorylation in serum-deprived cells, and that a speci®c inhibitor of MAPK/ERK, PD98059 eliminated the anti-apoptotic activity of rhVEGF or hypoxia by increasing Bax/Bcl-2 ratio and caspase-3 activity. Our data led us to conclude that induction of ERK phosphorylation and decrease of Bax/Bcl-2 ratio by rhVEGF implies that hypoxiainduced VEGF prevents apoptosis of serum-deprived cells by activating the MAPK/ERK pathway. Taken together, we propose that hypoxia enhances survival of nutrient-depleted tumor cells by reducing susceptibility to apoptosis, which consequently leads to tumor malignancy. Oncogene (2000) 19, 4621 ± 4631.
To prevent the development of malignancies, mammalian cells activate disposal programs, such as programmed cell death, in response to deregulated oncogene expression. However, the molecular basis for regulation of cellular disposal machinery in response to activated oncogenes is unclear at present. In this study, we show that upregulation of the autophagy-related protein, Atg5, is critically required for the oncogenic H-ras-induced autophagic cell death and that Rac1/mitogen-activated kinase kinase (MKK) 7/c-Jun N-terminal kinase (JNK) signals upregulation of Atg5. Overexpression of H-ras(V12) induced marked autophagic vacuole formation and cell death in normal fibroblasts, which remained unaffected by a caspase inhibitor. Pretreatment with Bafilomycin A1, an autophagy inhibitor, completely attenuated H-ras(V12)-induced cell death as well as autophagic vacuole formation. Selective production of Atg5 was observed in cells overexpressing H-ras(V12), and small interfering RNA (siRNA) targeting of Atg5 clearly inhibited autophagic cell death. Interestingly, inhibition of JNK or c-Jun by specific siRNA suppressed Atg5 upregulation and autophagic cell death. Moreover, inhibition of MKK7, but not MKK4, effectively attenuated H-ras(V12)-induced JNK activation. In addition, ectopic expression of RacN17 or Rac1-siRNA effectively inhibited MKK7-JNK activation, Atg5 upregulation and autophagic cell death. These data support the notion that upregulation of Atg5 is required for the oncogenic H-ras-induced autophagic cell death in normal fibroblasts and that activation of Rac1/MKK7/JNK-signaling pathway leads to upregulation of Atg5 in response to oncogenic H-ras. Our findings suggest that in cells acquiring deregulated oncogene expression, oncogenic stress triggers autophagic cell death, which protects cells against malignant progression.
Although much is known about interleukin (IL)-1 and its role as a key mediator of cartilage destruction in osteoarthritis, only limited information is available on IL-1 signaling in chondrocyte dedifferentiation. Here, we have characterized the molecular mechanisms leading to the dedifferentiation of primary cultured articular chondrocytes by IL-1 treatment. IL-1 or lipopolysaccharide, but not phorbol 12-myristate 13-acetate, retinoic acid, or epidermal growth factor, induced nicotinamide phosphoribosyltransferase (NAMPT) expression, showing the association of inflammatory cytokines with NAMPT regulation. SIRT1, in turn, was activated NAMPT-dependently, without any alteration in the expression level. Activation or inhibition of SIRT1 oppositevely regulates IL-1-mediated chondrocyte dedifferentiation, suggesting this protein as a key regulator of chondrocytes phenotype. SIRT1 activation promotes induction of ERK and p38 kinase activities, but not JNK, in response to IL-1. Subsequently, ERK and p38 kinase activated by SIRT1 also induce SIRT1 activation, forming a positive feedback loop to sustain downstream signaling of these kinases. Moreover, we found that the SIRT1-ERK complex, but not SIRT1-p38, is engaged in IL-1-induced chondrocyte dedifferentiation via a Sox-9-mediated mechanism. JNK is activated by IL-1 and modulates dedifferentiation of chondrocytes, but this pathway is independent on NAMPT-SIRT1 signaling. Based on these findings, we propose that IL-1 induces dedifferentiation of articular chondrocytes by up-regulation of SIRT1 activity enhanced by both NAMPT and ERK signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.