Ethene, propene, allyl chloride, and carbon monoxide were used to probe the effects of adding an average of one chlorine atom for every eight Ag atoms of a Ag(111) surface. On the basis of reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD), this coverage is sufficient to alter the electronic structure of more than 95% of the surface Ag atoms. For CO, C2H4, and C3H6, TPD peak temperatures increase, indicating increased adsorbate-substrate bond strength, and vibrational bands are both red-and blue-shifted compared to the case for adsorption on clean Ag(111). Modes reflecting interactions of π adsorbate orbitals with the substrate are particularly sensitive to the presence of Cl. These changes are attributed to altered electronic structure of Ag atoms, i.e., partially empty d-band character, induced by the presence of electron-withdrawing Cl. C3H5Cl is different in that C-Cl bond dissociation to form Cl and C3H5 (allyl) accompanies adsorption on both clean and Cl-covered Ag(111). The influence of adsorbed Cl on the thermal chemistry of C3H5 is evident in TPD, and the adsorption structure taken by adsorbed C3H5 is evident in RAIRS.