The common model for integrin mediated signaling is based on integrin clustering and the potential for that clustering to recruit signaling molecules including FAK and src. The clustering model for transmembrane signaling originated with the analysis of the EGF receptor signaling and remains the predominant model. The roles for substrate-bound ligand and ligand occupancy in integrin-mediated signaling are less clear. A kinetic model was established using HT1080 cells in which there was a linear relationship between the strength of adhesion, the proportion of ␣51 integrin that could be chemically cross-linked, and the number of receptor-ligand bonds. This graded signal produced a similarly graded response measured by the level of specific phosphorylation of FAK Y397. FAK Y397 phosphorylation could also be induced by antibody bound to the substrate. In contrast, clustering of ␣51 on suspended cells with either antibody to 1 or by clustering of soluble ligand bound to ␣51 induced the phosphorylation of FAK Y861 but not Y397. There were no differences in signaling when activating antibodies were compared with blocking antibodies, presence or absence of ligand. Only tethering of ␣51 to the substrate was required for induction of FAK Y397 phosphorylation.
INTRODUCTIONThere are several classes of transmembrane receptors that are involved in the transmission of signals from the extracellular space across the plasma membrane. It is a logical requirement of these systems that ligand binding to the extracellular domain results in a change in the cytoplasmic domain. How the signal is transferred from the extracellular domain is basic to the generation of the intracellular downstream signals. Allosteric proteins have been described in which the occupation of a binding site on one side of the protein can result in a conformational change that affects other binding sites. The interposition of a lipid bilayer between the receiving and effector domains of the transmembrane receptors poses limitations in the application of the allosteric model. Although a few of the receptor tyrosine kinase receptor systems have been analyzed in detail, the mechanism for transmembrane signal transduction by other receptor classes is less well understood.The EGF receptor is the best understood model. Receptor dimerization is initiated by the binding of EGF to extracellular domain 1 altering the conformation of the extracellular domain to generate a dimerization of receptors mediated through domain 2. This dimerization brings the cytoplasmic domains of two EGF receptors into proximity and allows the cross-phosphorylation of cytoplasmic domains by the encoded tyrosine kinase (Schlessinger, 2000). The generation of signals through receptor dimerization is a general theme. Among the tyrosine kinase receptors the mechanisms of generating the dimer vary from the use of bivalent ligands for growth hormone and erythropoietin (Kossiakoff and de Vos, 1998;Jiang and Hunter, 1999), to dimeric ligands for PDGF and VEGF (Wiesmann et al., 1997), to complexe...