While photosynthesis of symbiotic algae is essential for reef-building corals, excess irradiance inhibits photosynthesis through photoinhibition, which can lead to coral bleaching under elevated temperature conditions. Here we show that water flow reduces photoinhibition of in hospite endosymbionts in the coral Acropora digitifera. Diurnal monitoring of chlorophyll fluorescence, under 2 different flow regimes (< 3 and 20 cm s -1 flow rates) in an outdoor aquarium, showed reduced photoinhibition, but only under moderate flow conditions (20 cm s -1 ). Experimental (laboratory) measurements, on time scales ranging from minutes to hours, showed that flow-mediated reductions in photoinhibition occurred not by enhancing recovery of the damaged photosystem, but rather through inducing differential photodamage. Moreover, experiments involving sequential light oscillations (500/20 and 1000/20 µmol photons m -2 s -1 ) at 3 flow regimes, < 3, 10, and 20 cm s -1 , on a time scale ranging from hours to days, revealed water-velocity-dependent reductions of dynamic photoinhibition. These results, on time scales ranging from minutes to weeks, confirm that reduced water flow amplifies photodamage of algal photosynthesis under strong irradiance, which in turn affects coral tolerance to strong irradiance and temperature.