Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M-S distances of 2.63 and 2.54 A, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3(3-) --> M(II)(TRI LXC)3(-). While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3(-), the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 (+) at pH < 5 followed by a two-proton dissociation step (pK(a2)) yielding M(II)(TRI LXC)3(-). Pb(II)(TRI LXC)(HTRI LXC)2(+) converts to Pb(II)(TRI LXC)3(-) at slightly lower pH values than the corresponding Cd(II)-peptide complexes. In addition, Pb(II) displays a lower pK (a) of binding to the "d"-substituted peptide, (TRI L12C, pK(a2) = 12.0) compared with the "a"-substituted peptide, (TRI L16C, pK (a2) = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K(bind) = 3.2 x 10(7) M(-1)) compared with that with TRI L16C (K(bind) = 1.2 x 10(7) M(-1)) at pH > 8.
Herein, we evaluate the binding of Pb(II) and Bi(III) to cysteine-substituted versions of the TRI peptides [AcG-(LKALEEK)4G-NH2] which have previously been shown to bind Hg(II) and Cd(II) in unusual geometries as compared with small-molecule thiol ligands in aqueous solutions. Studies of Pb(II) and Bi(III) with the peptides give rise to complexes consistent with the metal ions bound to three sulfur atoms with M-S distances of 2.63 and 2.54 A, respectively. Competition experiments between the metal ions Pb(II), Cd(II), Hg(II) and Bi(III) for the peptides show that Hg(II) has the highest affinity, owing to the initial formation of the extremely strong HgS2 bond. Cd(II) and Pb(II) have comparable binding affinities at pH > 8, while Bi(III) displays the weakest affinity, following the model, M(II) + (TRI LXC)3(3-) --> M(II)(TRI LXC)3(-). While the relevant equilibria for Hg(II) binding to the TRI peptides corresponds to a strong first step forming Hg(TRI LXC)2(HTRI LXC), followed by a single deprotonation to give Hg(TRI LXC)3(-), the binding of Cd(II) and Pb(II) is consistent with initial formation of M(II)(TRI LXC)(HTRI LXC)2 (+) at pH < 5 followed by a two-proton dissociation step (pK(a2)) yielding M(II)(TRI LXC)3(-). Pb(II)(TRI LXC)(HTRI LXC)2(+) converts to Pb(II)(TRI LXC)3(-) at slightly lower pH values than the corresponding Cd(II)-peptide complexes. In addition, Pb(II) displays a lower pK (a) of binding to the "d"-substituted peptide, (TRI L12C, pK(a2) = 12.0) compared with the "a"-substituted peptide, (TRI L16C, pK (a2) = 12.6), the reverse of the order seen for Hg(II) and Cd(II). Pb(II) also showed a stronger binding affinity for TRI L12C (K(bind) = 3.2 x 10(7) M(-1)) compared with that with TRI L16C (K(bind) = 1.2 x 10(7) M(-1)) at pH > 8.
The role of the lone pair of electrons of Pb(II) in determining the coordination geometry is analyzed from crystallographic studies and ab initio molecular orbital optimizations. Of particular interest are factors that contribute to the disposition of ligands around the lead with geometries that are (1) holodirected, in which the bonds to ligand atoms are distributed throughout the surface of an encompassing globe, and (2) hemidirect ed, in which the bonds to ligand atoms are directed throughout only part of an encompassing globe, i.e., there is an identifiable void in the distribution of bonds to the ligands. The preferred coordination numbers for lead were found to be 4 for Pb(IV) and 4 and 6 for Pb(II). All Pb(IV) structures in the CSD have a holodirected coordination geometry. Pb(II) compounds are hemidirected for low coordination numbers (2−5) and holodirected for high coordination numbers (9, 10), but for intermediate coordination numbers (6−8), examples of either type of stereochemistry are found. Ab initio molecular orbital studies of gas-phase Pb(II) complexes show that a hemidirected geometry is favored if the ligand coordination number is low, the ligands are hard, and there are attractive interactions between the ligands. In such complexes, the lone pair orbital has p character and fewer electrons are transferred from the ligands to the bonding orbitals of Pb(II), resulting in bonds that are more ionic. A holodirected geometry is favored when the coordination number is high and the ligands are soft and bulky or show strong interligand repulsion. The lone pair orbital has little or no p character when the geometry is holodirected, and the bonds are more covalent than in the hemidirected structures. The energy cost of converting a hemidirected to a constrained holodirected structure is of the order 8−12 kcal/mol in the absence of strong interligand interactions.
Recent studies suggest that the developmental toxicity associated with childhood lead poisoning may be attributable to interactions of Pb(II) with proteins containing thiol-rich structural zinc-binding sites. Here, we report detailed structural studies of Pb(II) in such sites, providing critical insights into the mechanism by which lead alters the activity of these proteins. X-ray absorption spectroscopy of Pb(II) bound to structural zinc-binding peptides reveals that Pb(II) binds in a three-coordinate Pb(II)-S3 mode, while Zn(II) is known to bind in a four-coordinate mode in these proteins. This Pb(II)-S3 coordination in peptides is consistent with a trigonal pyramidal Pb(II)-S3 model compound previously reported by Bridgewater and Parkin, but it differs from many other reports in the small molecule literature which have suggested Pb(II)-S4 as a preferred coordination mode for lead. Reexamination of the published structures of these "Pb(II)-S4" compounds reveals that, in almost all cases, the coordination number of Pb is actually 5, 6, or 8. The results reported herein combined with this new review of published structures suggest that lead prefers to avoid fourcoordination in sulfur-rich sites, binding instead as trigonal pyramidal Pb(II)-S3 or as Pb(II)-S5-8. In the case of structural zinc-binding protein sites, the observation that lead binds in a three-coordinate mode, and in a geometry that is fundamentally different from the natural coordination of zinc in these sites, explains why lead disrupts the structure of these peptides and thus provides the first detailed molecular understanding of the developmental toxicity of lead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.