Arabidopsis thaliana cell-wall invertase 1 (AtC-WIN1), a key enzyme in sucrose metabolism in plants, catalyzes the hydrolysis of sucrose into fructose and glucose. AtCWIN1 belongs to the glycoside hydrolase GH-J clan, where two carboxylate residues (Asp23 and Glu203 in AtCWIN1) are well documented as a nucleophile and an acid/base catalyst. However, details at the atomic level about the role of neighboring residues and enzyme-substrate interactions during catalysis are not fully understood. Here, quantum mechanical/molecular mechanical (QM/MM) free-energy simulations were carried out to clarify the origin of the observed decreased rates in Asp239Ala, Asp239Asn, and Asp239Phe in AtCWIN1 compared to the wild type and delineate the role of Asp239 in catalysis. The glycosylation and deglycosylation steps were considered in both wild type and mutants. Deglycosylation is predicted to be the rate-determining step in the reaction, with a calculated overall free-energy barrier of 15.9 kcal/mol, consistent with the experimental barrier (15.3 kcal/mol). During the reaction, the −1 furanosyl ring underwent a conformational change corresponding to 3 E ↔ [E 2 ] ⧧ ↔ 1 E according to the nomenclature of saccharide structures along the full catalytic reaction. Asp239 was found to stabilize not only the transition state but also the fructosyl-enzyme intermediate, which explains findings from previous structural and mutagenesis experiments. The 1-OH•••nucleophile interaction has been found to provide an important contribution to the transition state stabilization, with a contribution of ∼7 kcal/mol, and affected glycosylation more significantly than deglycosylation. This study provides molecular insights that improve the current understanding of sucrose binding and hydrolysis in members of clan GH-J, which may benefit protein engineering research. Finally, a rationale on the sucrose inhibitor configuration in chicory 1-FEH IIa, proposed a long time ago in the literature, is also provided based on the QM/MM calculations.