Abstract.A modification of a semi-quantitative colorbased enzyme assay was used to quantify the activity of 19 enzymes (5 peptidases, 3 lipases, 3 phosphotases, and 8 carbohydrases) during five stages of development in eight species of calyptraeid gastropods. Sixteen of the 19 enzymes showed a significant effect of mode of development on the concentration of the reaction product after incubation of homogenates standardized for protein content. The overall pattern was that planktotrophs showed the highest activities, followed by adelphophages, and nonfeeding embryos, which had the lowest enzyme activities. Thirteen enzymes showed significant differences across developmental stages. Of these, eight showed a clear increase during development. Only one of the enzymes showed a sudden jump in activity between the unfed, pre-hatching stage and post-hatching stages that were fed Isochrysis galbana. In three cases, ANOVA identified two exclusive, significantly different groups of species. In naphthol-AS-BI-phosphohydrolase, the measured absorbance of Crucibulum spinosum samples was significantly higher than in all of the other species. The activity of ␣-fucosidase in Crepipatella occulta was significantly greater than in the other seven species. Finally, the activity of -galactosidase was significantly higher in C. occulta, Crucibulum spinosum, and Bostrycapulus calyptraeformis than in the four Crepidula species. This is the only enzyme for which there is an indication of a phylogenetic effect. Relative enzyme activities were similar to those reported for other herbivorous gastropods, with the three phosphohydrolases, four carbohydrases (-galactosidase, -glucuronidase, N-acetyl--glucosaminidase, and ␣-fucosidase), and leucine arylamidase showing high activities.