2018
DOI: 10.1080/21599165.2018.1532411
|View full text |Cite
|
Sign up to set email alerts
|

Activity of non-parliamentary opposition communities in social networks in the context of the Russian 2016 parliamentary election

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2023
2023

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 24 publications
0
2
0
1
Order By: Relevance
“…Secondly, next to representation of the enemy we see a utopic picture of the 'correct society', of the way life should be. This representation can be secular and retrospective, with memories of the Russian Empire or the USSR, or it can be a representation of some early anarchist pre-state relations [10].…”
Section: Discussionmentioning
confidence: 99%
“…Secondly, next to representation of the enemy we see a utopic picture of the 'correct society', of the way life should be. This representation can be secular and retrospective, with memories of the Russian Empire or the USSR, or it can be a representation of some early anarchist pre-state relations [10].…”
Section: Discussionmentioning
confidence: 99%
“…With social networks growing exponentially, problems related to detection of extremist content, recruitment of supporters of right-wing radicals and Islamists, and radicalization of extremist sentiments have attracted the attention of a large number of researchers (Ashcroft et al, 2015; Gitari et al, 2015; Gröndahl et al, 2018; Hartung et al, 2017; Myagkov et al, 2018; Scanlon and Gerber, 2014; Schmidt and Wiegand, 2017; Ting et al, 2013; Wei et al, 2016). However, the overwhelming majority of studies in this area focus on investigating approaches to identification of various forms of extremist discourse; only a few studies address identification of strategies and tactics that enable extremist ideology supporters (right-wing radicals and Islamists) to successfully propagate their ideas on social networks and to recruit new followers.…”
Section: Methods and Datamentioning
confidence: 99%
“…Gradient boosting) -метод машинного обучения для задач регрессии и классификации, который создает алгоритм прогнозирования в форме последовательного набора слабых предсказывающих моделей.11 Случайный лес (англ. Random forest) -метод машинного обучения, создающий алгоритм прогнозирования в виде случайного набора решающих деревьев.12 LightGBM (https://github.com/Microsoft/LightGBM) -бесплатная реализация метода градиентного бустинга.13 В своих предыдущих работах мы успешно апробировали методику расчета индекса онлайн-активности для изучения политических процессов[Щекотин и др., 2017;Myagkov et al, 2018;Myagkov et al, 2019].…”
unclassified