2018
DOI: 10.1177/1533033818802789
|View full text |Cite
|
Sign up to set email alerts
|

Acute Lymphoblastic Leukemia Detection and Classification of Its Subtypes Using Pretrained Deep Convolutional Neural Networks

Abstract: Leukemia is a fatal disease of white blood cells which affects the blood and bone marrow in human body. We deployed deep convolutional neural network for automated detection of acute lymphoblastic leukemia and classification of its subtypes into 4 classes, that is, L1, L2, L3, and Normal which were mostly neglected in previous literature. In contrary to the training from scratch, we deployed pretrained AlexNet which was fine-tuned on our data set. Last layers of the pretrained network were replaced with new la… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
152
1
2

Year Published

2019
2019
2024
2024

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 243 publications
(156 citation statements)
references
References 17 publications
1
152
1
2
Order By: Relevance
“…For example, Shafique etc. [9] employed upgraded Alex Net to differentiate ALL cells as well as their subtypes. Rehman A. etc.…”
Section: Introductionmentioning
confidence: 99%
“…For example, Shafique etc. [9] employed upgraded Alex Net to differentiate ALL cells as well as their subtypes. Rehman A. etc.…”
Section: Introductionmentioning
confidence: 99%
“…The results achieved 97.78% classification accuracy. Shafique and Tehsin [26] classified ALL and its subtypes using a pre-trained AlexNet. The ALL-IDB2 dataset, which included 260 images, was used for evaluation.…”
Section: Deep-learning-based Methodsmentioning
confidence: 99%
“…Os autores em Shafique et al [Shafique and Tehsin 2018] propuseram um modelo de CNN para diagnosticar diferentes subtipos de leucemia linfoide aguda. A arquitetura proposta foi pré-treinada e continha sete camadas, sendo quatro convolucionais e três totalmente conectadas.…”
Section: Trabalhos Relacionadosunclassified
“…] foi superior. Já em[Thanh et al 2018],[Rehman et al 2018] e[Shafique and Tehsin 2018], os resultados apresentados foram excelentes, no entanto, as imagens utilizadas nos experimentos possuem apenas uma base de dados, enquanto o método de[Vogado et al 2018] e o método proposto possuem diversas bases de dados.A transferência de aprendizagem utilizada pelos autores em[Vogado et al 2018] consistiu na extração de características utilizando a última camada totalmente conectada. A partir dos experimentos realizados, os autores afirmaram que com pelo menos 5% das características selecionadas a partir da razão de ganho, o classificador SVM apresenta resultados acima de 99%.Considerando que os melhores resultados foram obtidos pela abordagem proposta em[Vogado et al 2018], utilizamos o código original dessa abordagem para realizar uma comparação com o método proposto no mesmo conjunto de dados apresentado neste trabalho.…”
unclassified