Janus kinases (JAKs) play an essential role in the regulation of cytokine signaling. They control cell survival, proliferation, differentiation, immune response, and hematopoiesis. Deregulation of JAK signaling has been associated to the pathogenesis of numerous immune-inflammatory diseases, hematological malignancies, and solid tumors. Thus, JAK proteins have emerged as attractive therapeutic targets in the last decade. The discovery of the gain-of-function JAK2 mutation (JAK2 V617F) as the main cause of polycythemia vera-a chronic myeloproliferative syndromeled to the development of the JAK inhibitor ruxolitinib. This key finding opened the door to the search for new therapeutic agents able to suppress the constitutive activation of JAK signaling in hematological cancers and other tumors. However, given the conserved nature of the kinase domain among JAK family members, and the interrelated roles of JAK kinases in many physiological processes, including hematopoiesis and immunity, the broad usage of JAK inhibitors in hematology is challenged by their narrow therapeutic window. Novel therapies are, therefore, needed. This chapter focuses on the understanding of the complex signaling of JAK proteins in cancerous cells, the various JAK aberrations implicated in myeloproliferative neoplasms, leukemia, and lymphoma, and the clinically available JAK inhibitors in cancer therapy.