A hallmark of cancer cells includes a metabolic reprograming that provides energy, the essential building blocks, and signaling required to maintain survival, rapid growth, metastasis, and drug resistance of many cancers. The influence of tumor microenviroment on cancer cells also results an essential driving force for cancer progression and drug resistance. Lipid-related enzymes, lipid-derived metabolites and/or signaling pathways linked to critical regulators of lipid metabolism can influence gene expression and chromatin remodeling, cellular differentiation, stress response pathways, or tumor microenviroment, and, collectively, drive tumor development. Reprograming of lipid metabolism includes a deregulated activity of mevalonate (MVA)/cholesterol biosynthetic pathway in specific cancer cells which, in comparison with normal cell counterparts, are dependent of the continuous availability of MVA/cholesterol-derived metabolites (i.e., sterols and non-sterol intermediates) for tumor development. Accordingly, there are increasing amount of data, from preclinical and epidemiological studies, that support an inverse association between the use of statins, potent inhibitors of MVA biosynthetic pathway, and mortality rate in specific cancers (e.g., colon, prostate, liver, breast, hematological malignances). In contrast, despite the tolerance and therapeutic efficacy shown by statins in cardiovascular disease, cancer treatment demands the use of relatively high doses of single statins for a prolonged period, thereby limiting this therapeutic strategy due to adverse effects. Clinically relevant, synergistic effects of tolerable doses of statins with conventional chemotherapy might enhance efficacy with lower doses of each drug and, probably, reduce adverse effects and resistance. In spite of that, clinical trials to identify combinatory therapies that improve therapeutic window are still a challenge. In the present review, we revisit molecular evidences showing that deregulated activity of MVA biosynthetic pathway has an essential role in oncogenesis and drug resistance, and the potential use of MVA pathway inhibitors to improve therapeutic window in cancer.
Background and Purpose There are no medications currently available to treat metabolic inflammation. Bruton's tyrosine kinase (BTK) is highly expressed in monocytes and macrophages and regulates NF‐κB and NLRP3 inflammasome activity; both propagate metabolic inflammation in diet‐induced obesity. Experimental Approach Using an in vivo model of chronic inflammation, high‐fat diet (HFD) feeding, in male C57BL/6J mice and in vitro assays in primary murine and human macrophages, we investigated if ibrutinib, an FDA approved BTK inhibitor, may represent a novel anti‐inflammatory medication to treat metabolic inflammation. Key Results HFD‐feeding was associated with increased BTK expression and activation, which was significantly correlated with monocyte/macrophage accumulation in the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD‐fed mice inhibited the activation of BTK and reduced monocyte/macrophage recruitment to the liver, adipose tissue, and kidney. Ibrutinib treatment to HFD‐fed mice decreased the activation of NF‐κB and the NLRP3 inflammasome. As a result, ibrutinib treated mice fed HFD had improved glycaemic control through restored signalling by the IRS‐1/Akt/GSK‐3β pathway, protecting mice against the development of hepatosteatosis and proteinuria. We show that BTK regulates NF‐κB and the NLRP3 inflammasome specifically in primary murine and human macrophages, the in vivo cellular target of ibrutinib. Conclusion and Implications We provide “proof of concept” evidence that BTK is a novel therapeutic target for the treatment of diet‐induced metabolic inflammation and ibrutinib may be a candidate for drug repurposing as an anti‐inflammatory agent for the treatment of metabolic inflammation in T2D and microvascular disease.
Background and Purpose Bruton's TK (BTK) is a non‐receptor kinase best known for its role in B lymphocyte development that is critical for proliferation and survival of leukaemic cells in B‐cell malignancies. However, BTK is expressed in myeloid cells, particularly neutrophils, monocytes and macrophages where its inhibition has been reported to cause anti‐inflammatory properties. Experimental Approach We explored the role of BTK on migration of myeloid cells (neutrophils, monocytes and macrophages), in vitro using chemotaxis assays and in vivo using zymosan‐induced peritonitis as model systems. Key Results Using the zymosan‐induced peritonitis model of sterile inflammation, we demonstrated that acute inhibition of BTK prior to zymosan challenge reduced phosphorylation of BTK in circulating neutrophils and monocytes. Moreover, pharmacological inhibition of BTK with ibrutinib specifically inhibited neutrophil and Ly6Chi monocytes, but not Ly6Clo monocyte recruitment to the peritoneum. X‐linked immunodeficient (XID) mice, which have a point mutation in the Btk gene, had reduced neutrophil and monocyte recruitment to the peritoneum following zymosan challenge. Pharmacological or genetic inhibition of BTK signalling substantially reduced human monocyte and murine macrophage chemotaxis, to a range of clinically relevant chemoattractants (C5a and CCL2). We also demonstrated that inhibition of BTK in tissue resident macrophages significantly decreases chemokine secretion by reducing NF‐κB activity and Akt signalling. Conclusion and Implications Our work has identified a new role of BTK in regulating myeloid cell recruitment via two mechanisms, reducing monocyte/macrophages' ability to undergo chemotaxis and reducing chemokine secretion, via reduced NF‐κB and Akt activity in tissue resident macrophages.
BCR-ABL1-STAT5 is an oncogenic signaling pathway in human chronic myelogenous leukemia (CML) and it represents a valid target for anti-CML drug design. Resistance to direct BCR-ABL1 inhibitors is a common clinical issue, so STAT5 inhibition has become an interesting alternative target. In this study, the effects of NPQ-C6, a novel naphtoquinone-coumarin conjugate, were evaluated on human CML-derived K562 cells. Live-Cell Imaging analysis revealed that NPQ-C6 inhibited 2D (IC50AUC = 1.4 ± 0.6 μM) growth of CML cells. NPQ-C6 increased sub-G1 and reduced G0/G1 cell cycle phases in a dose- and time-dependent manner. This effect on cell cycle was related to increased levels of apoptotic nuclei, cleavage of caspase-3, -9, and PARP and annexin V-positive cells. NPQ-C6 increased γH2AX, a double-strand DNA break marker. NPQ-C6 showed a wide range of modulatory effects on cell signaling through an early increased phosphorylation of JNK, P38-MAPK and AKT, and decreased phosphorylation of ERK1/2, BCR-ABL1, and STAT5. NPQ-C6 inhibited expression of c-MYC and PYM-1, two target gene products of BCR-ABL1/STAT5 signaling pathway. Cytokine-induced activation of STAT5/STAT3-dependent transcriptional and DNA binding activities were also inhibited by NPQ-C6. Notably, NPQ-C6 maintained its activity on BCR-ABL1/STAT5/c-MYC/PIM-1 oncogenic pathway in imatinib-resistant cells. Molecular modeling suggested BCR-ABL1 and JAK2 proteins as NPQ-C6 targets. In summary, our data show a novel multikinase modulator that might be therapeutically effective in BCR-ABL1-STAT5-related malignancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.