Background: Prompt diagnosis of acute promyelocytic leukemia (APL) is critical for patient care. In this study, we aimed to characterize the immunophenotype of APL and explore immunophenotypic difference between APL and its mimics using flow cytometric analysis.Methods: Eighty-five cases were collected, including 47 APL, 26 NPM1-mutated acute myeloid leukemia (AML) and 12 KMT2A-rearranged AML with an APL-like immunophenotype. Immunophenotypes were analyzed using flow cytometric analysis.
Results: APL showed four distinct patterns (designated a-d) based on CD45/SSC plots. Blasts in patterns a-c showed high side scatter, whereas blasts in pattern d had low side scatter and were located in the traditional blast gate. Compared with patterns a-c, pattern d of APL (APL-D) was more often positive for CD2 (p = 0.0005) and CD34 (p = 0.0002) in blasts. All NPM1-mutated AML and KMT2Arearranged AML cases with an APL-like immunophenotype had blasts in the traditional blast gate on CD45/SSC, mimicking APL-D. In comparison, uniform CD13 and positive CD64 were seen in 100% (n = 13) APL-D cases and in only 2 of 26 (8%) NPM1-mutated AML cases (p < 0.0001). In addition, APL-D cases were more likely to be positive for CD2 and/or CD34 than NPM1-mutated AML (p < 0.0001 and p = 0.0007, respectively). In comparison with APL-D, KMT2Arearranged AML cases were less often positive for myeloperoxidase (MPO) (p = 0.001), with none being strongly positive. Similar to NPM1-mutated AML and different from APL-D, KMT2A-rearranged AML cases were rarely positive for CD34 and all negative for CD2.Conclusions: APL and its immunophenotypic mimics share some immunophenotypic similarities but can be distinguished by CD2, CD13, CD34, CD64, and MPO.