Land suitability analysis is employed to evaluate the appropriateness of land for a particular purpose whilst integrating both qualitative and quantitative inputs, which can be continuous in nature. However, in agricultural modelling there is often a disregard of this contiguous aspect. Therefore, some parametric procedures for suitability analysis compartmentalise units into defined membership classes. This imposition of crisp boundaries neglects the continuous formations found throughout nature and overlooks differences and inherent uncertainties found in the modelling. This research will compare two approaches to suitability analysis over three differing methods. The primary approach will use an Analytical Hierarchy Process (AHP), while the other approach will use a Fuzzy AHP over two methods; Fitted Fuzzy AHP and Nested Fuzzy AHP. Secondary to this, each method will be assessed into how it behaves in a climate change scenario to understand and highlight the role of uncertainties in model conceptualisation and structure. Outputs and comparisons between each method, in relation to area, proportion of membership classes and spatial representation, showed that fuzzy modelling techniques detailed a more robust and continuous output. In particular the Nested Fuzzy AHP was concluded to be more pertinent, as it incorporated complex modelling techniques, as well as the initial AHP framework. Through this comparison and assessment of model behaviour, an evaluation of each methods predictive capacity and relevance for decision-making purposes in agricultural applications is gained.