As undisturbed habitat becomes increasingly rare, managers charged with ensuring the survival of endangered primate species must increasingly utilize disturbed and degraded habitats in species survival plans. Yet we have an imperfect understanding of the true long-term viability of primate populations in disturbed habitat, and census data can be misleading because density is not necessarily correlated with habitat quality and population viability in predictable ways. Here we present clinical laboratory data on hematology, serum biochemistry, fat-soluble vitamins, minerals, iron analytes, viral serology, and parasitology of diademed sifaka (Propithecus diadema), derived from the capture of 26 individuals spanning eight groups and two habitats (undisturbed vs. disturbed and fragmented) at Tsinjoarivo, Madagascar. Blood from fragment individuals had significantly lower values for several factors: white blood cell counts, bilirubin, total protein, albumin, calcium, sodium, chloride, manganese, zinc, iron and total iron-binding capacity. Several biochemical variables were higher in immature individuals, probably due to active growth. The large number of interhabitat differences suggests that habitat disturbance has an impact on physiological health within this population, perhaps reflecting dietary stress and/or immunosuppression. These results, combined with previous data showing altered diet, slower juvenile growth, and reduced activity in disturbed forest fragments, suggest that fragment sifakas may be less healthy than continuous forest groups. Finally, Tsinjoarivo sifakas have extremely low blood urea nitrogen (perhaps reflecting protein limitation) and selenium levels relative to other lemurs. Despite their survival and reproduction in the short term in fragments, these sifakas may represent a riskier conservation investment than conspecifics in undisturbed forest, and may be more susceptible to environmental stressors. However, more data on the fitness consequences of these biochemical differences are needed for a better interpretation of their impacts on long-term viability prospects.