The deer ked (Lipoptena cervi) is a haematophagous ectoparasite of cervids that harbours haemotrophic Bartonella. A prerequisite for the vector competence of the deer ked is the vertical transmission of the pathogen from the mother to its progeny and transstadial transmission from pupa to winged adult. We screened 1154 pupae and 59 pools of winged adult deer keds from different areas in Finland for Bartonella DNA using PCR. Altogether 13 pupa samples and one winged adult deer ked were positive for the presence of Bartonella DNA. The amplified sequences were closely related to either B. schoenbuchensis or B. bovis. The same lineages were identified in eight blood samples collected from free-ranging moose. This is the first demonstration of Bartonella spp. DNA in a winged adult deer ked and, thus, evidence for potential transstadial transmission of Bartonella spp. in the species.
The raccoon dog (Nyctereutes procyonoides) is the only canid with passive overwintering in areas with cold winters, but the depth and rhythmicity of wintertime hypothermia in the wild raccoon dog are unknown. To study the seasonal rhythms of body temperature (T(b)), seven free-ranging animals were captured and implanted with intra-abdominal T(b) loggers and radio-tracked during years 2004-2006. The average size of the home ranges was 306+/-26 ha, and the average 24 h T(b) was 38.0+/-<0.01 degrees C during the snow-free period (May-November). The highest and lowest T(b) were usually recorded around midnight (21:00-02:00 h) and between 05:00-11:00 h, respectively, and the range of the 24 h oscillations was 1.2+/-0.01 degrees C. The animals lost approximately 43+/-6% of body mass in winter (December-April), when the average size of the home ranges was 372+/-108 ha. During the 2-9-wk periods of passivity in January-March, the average 24 h T(b) decreased by 1.4-2.1 degrees C compared to the snow-free period. The raccoon dogs were hypothermic for 5 h in the morning (06:00-11:00 h), whereas the highest T(b) values were recorded between 16:00-23:00 h. The range of the 24 h oscillations increased by approximately 0.6 degrees C, and the rhythmicity was more pronounced than in the snow-free period. The ambient temperature and depth of snow cover were important determinants of the seasonal T(b) rhythms. The overwintering strategy of the raccoon dog resembled the patterns of winter sleep in bears and badgers, but the wintertime passivity of the species was more intermittent and the decrease in the T(b) less pronounced.
The deer ked, Lipoptena cervi L. (Diptera: Hippoboscidae), is an ectoparasitic fly that spread to Finland in the early 1960s from the southeast across the Soviet border. It is currently a common parasite of the moose, Alces alces (Artiodactyla: Cervidae), in the southern part of the country and its area of distribution is gradually spreading to Finnish Lapland, where it will come into contact with another potential cervid host, the semi-domesticated reindeer, Rangifer tarandus tarandus. The aim of this study was to determine the intensity of deer ked parasitism on the moose in eastern Finland. Whole skins of 23 moose were examined for the presence of deer keds, which were extracted and their total numbers estimated. The intensity of deer ked parasitism was correlated to the age, sex, skin area and anatomical region of the host. Bulls had the highest total number of keds (10616 ± 1375) and the highest deer ked density (35.7 ± 4.4 keds/dm(2) of skin). Cows had a higher total number of keds than calves (3549 ± 587 vs. 1730 ± 191), but ked densities on cows and calves were roughly equal (11.8 ± 1.7 vs. 9.4 ± 1.1 keds/dm(2) of skin). The density of keds was highest on the anterior back, followed by the posterior back, front limbs, abdomen, head and hind limbs. The sex ratio of deer keds was close to equal (male : female, 1.0 : 1.1). After they had consumed blood, male keds were heavier than females. As the total numbers and densities of deer keds were higher than reported previously on moose or for any other louse fly species, the effects of parasitism on the health of the host species should be determined.
Background Infrapatellar fat pad (IFP) has recently emerged as a potential source of inflammation in knee arthropathies. It has been proposed to be one source of adipocytokines, fatty acids (FA), and FA-derived lipid mediators that could contribute to the pathophysiological processes in the knee joint. Alterations in synovial fluid (SF) lipid composition have been linked to both osteoarthritis (OA) and rheumatoid arthritis (RA). The aim of the present study was to compare the FA signatures in the IFP and SF of RA and OA patients. Methods Pairs of IFP and SF samples were collected from the same knees of RA ( n = 10) and OA patients ( n = 10) undergoing total joint replacement surgery. Control SF samples ( n = 6) were harvested during diagnostic or therapeutic arthroscopic knee surgery unrelated to RA or OA. The FA composition in the total lipids of IFP and SF was determined by gas chromatography with flame ionization and mass spectrometric detection. Results Arthropathies resulted in a significant reduction in the SF proportions of n-6 polyunsaturated FA (PUFA), more pronouncedly in OA than in RA. OA was also characterized with reduced percentages of 22:6n-3 and lower product/precursor ratios of n-3 PUFA. The proportions of total monounsaturated FA increased in both RA and OA SF. Regarding IFP, RA patients had lower proportions of 20:4n-6, total n-6 PUFA, and 22:6n-3, as well as lower product/precursor ratios of n-3 PUFA compared to OA patients. The average chain length of SF FA decreased in both diagnoses and the double bond index in OA. Conclusions The observed complex alterations in the FA signatures could have both contributed to but also limited the inflammatory processes and cartilage destruction in the RA and OA knees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.