Abstract. We prove that any affine, resp. polarized projective, spherical variety admits a flat degeneration to an affine, resp. polarized projective, toric variety. Motivated by Mirror Symmetry, we give conditions for the limit toric variety to be a Gorenstein Fano, and provide many examples. We also provide an explanation for the limits as boundary points of the moduli space of stable pairs whose existence is predicted by the Minimal Model Program.