We study finite dimensional representations of current algebras, loop algebras and their quantized versions. For the current algebra of a simple Lie algebra of type ADE, we show that Kirillov-Reshetikhin modules and Weyl modules are in fact all Demazure modules. As a consequence one obtains an elementary proof of the dimension formula for Weyl modules for the current and the loop algebra. Further, we show that the crystals of the Weyl and the Demazure module are the same up to some additional label zero arrows for the Weyl module.For the current algebra Cg of an arbitrary simple Lie algebra, the fusion product of Demazure modules of the same level turns out to be again a Demazure module. As an application we construct the Cg-module structure of the Kac-Moody algebra g-module V (ℓΛ 0 ) as a semi-infinite fusion product of finite dimensional Cg-modules. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.