2015
DOI: 10.1080/10584587.2015.1029408
|View full text |Cite
|
Sign up to set email alerts
|

Adaptive Boolean Logic Using Ferroelectrics Capacitors as Basic Units of Artificial Neurons and Its Implementation in FPGA

Abstract: In this work we propose the implementation of boolean logic through artificial neurons with Ferroelectric Capacitor (FeCapacitor) as its basic unit on a reconfigurable hardware platform. Two neurons were implemented: the Perceptron and the Spiking Neuron model. Both neurons use the phenomenon of the hysteresis loop as an activation function and were embedded on a Field Gate Programmable Gate Array (FPGA) hardware platform. The implementations were carried out by Simulink models and hardware synthesizable block… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2021
2021
2021
2021

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 12 publications
0
1
0
1
Order By: Relevance
“…The first simulating model to the work of a biological neuron presented by the scientist McCulloch and Pitts in 1943, as computational model for a binary-threshold unit represents an artificial nerve cell operating in separate time by integrating mathematical logic and neurophysiology [29]. The output of the neuron is equals one when the input of the activation function is more than or equivalent to threshold term otherwise the output is equal to -1.…”
Section: Background 21 Artificial Neural Network Principlementioning
confidence: 99%
“…The first simulating model to the work of a biological neuron presented by the scientist McCulloch and Pitts in 1943, as computational model for a binary-threshold unit represents an artificial nerve cell operating in separate time by integrating mathematical logic and neurophysiology [29]. The output of the neuron is equals one when the input of the activation function is more than or equivalent to threshold term otherwise the output is equal to -1.…”
Section: Background 21 Artificial Neural Network Principlementioning
confidence: 99%
“…O uso de soluções em hardware tem se mostrado muito eficiente para auxiliar na execução desses métodos. Implementações realizadas em Field Programmable Gate Array (FPGA) conseguem a obtenção de ótimo desempenho com baixo consumo de energia, devido a paralelização e otimização dos algoritmos a nível de portas lógicas, sendo possível acelerar em até mil vezes o processamento das técnicas comparado às implementações convencionais em software (Silva et al, 2015;Holanda e Fernandes, 2016;Silva et al, 2016;Souza e Fernandes, 2014) O Naive Bayes (NB) é uma técnica de ML bastante utilizada para a resolução de problemas de classificação. Na literatura há alguns trabalhos que implementam o NB em hardware, buscando obter processamento em tempo real para as mais diversas aplicações, como reconhecimento facial e classificação de pacotes de redes (Chou e Chen, 2020;França et al, 2015).…”
Section: Introdu ç ãOunclassified