Changing climate and technology can often lead to nonstationary losses across both time and space for a variety of insurance lines including property, catastrophe, health, and life. As a result, naive estimation of premium rates using past losses will tend to be biased. We present three successively flexible data‐driven methodologies to nonparametrically smooth across both space and time simultaneously, thereby appropriately incorporating possibly nonidentically distributed data into the rating process. We apply these methodologies in estimating U.S. crop insurance premium rates. Crop insurance, with global premiums totaling $4.1 trillion in 2018, is an interesting application as losses exhibit both temporal and spatial nonstationarity. We find significant borrowing of information across both time and space. We also find all three methodologies improve both the stability and accuracy of crop insurance premium rates. The proposed methods may be of relevance for other lines of insurance characterized by spatial and/or temporal nonstationary losses.