Recently, the promising aspects of compressive sensing have inspired new circuit-level approaches for their efficient realization within the literature. However, most of these recent advances involving novel sampling techniques have been proposed without considering hardware and signal constraints. Additionally, traditional hardware designs for generating non-uniform sampling clock incur large area overhead and power dissipation. Herein, we propose a novel non-uniform clock generator called Adaptive Quantization Rate (AQR) generator using Magnetic Random Access Memory (MRAM)-based stochastic oscillator devices. Our proposed AQR generator provides ∼ 25-fold reduction in area, on average, while offering ∼ 6-fold reduced power dissipation, on average, compared to the state-of-the-art non-uniform clock generators.