2022
DOI: 10.20944/preprints202203.0199.v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Adaptive Sliding Mode Disturbance Observer and Deep Reinforcement Learning based Robust Motion Control for Micropositioners

Abstract: The robust control of high precision electromechanical systems, such as micropositioners, is challenging in terms of the inherent high nonlinearity, the sensitivity to external interference, and the complexity of accurate identification of the model parameters. To cope with these problems, this work investigates a disturbance observer-based deep reinforcement learning control strategy to realize high robustness and precise tracking performance. Reinforcement learning has shown great potential as optimal contro… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance